/MAT/LAW87 (BARLAT2000)
Руководство предоставляет список всех вводных ключевых слов и опций, доступных в Radioss.
Материалы
Эластопластические материалы
Эти материалы можно использовать для представления эластопластических материалов.
/MAT/LAW87 (BARLAT2000)
Формат блочного ключевого слова
Этот эластопластический закон разработан для анизотропных материалов, особенно алюминиевых сплавов. Напряжения текучести могут быть заданы с помощью пользовательских функций (пластическая деформация против напряжения) или аналитически, с использованием комбинации модели Swift-Voce. Модель основана на критерии Barlat YLD2000.
Формат
`
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW87/mat_ID/unit_ID/mat_title
ρ_i E ν Iflag VP c p
If I_fit = 0, то вставить следующие две строки
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α1 α2 α3 α4 I_fit α5 α6 α7 α8
If I_fit = 1, то вставить следующие две строки.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
σ00 σ45 σ90 σb I_fit r00 r45 r90 rb
`
Параметры упрочнения
Ввод для текучести материала и упрочнения. Если Iflag = 0, читать:
`
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
a Fcut Fsmooth Nrate
`
Примеры использования
Пример 1 (с вводом параметров Barlat Iflag = 0 и I_fit = 0)
`
#RADIOSS STARTER
/UNIT/1
unit for mat kg mm ms
/MAT/LAW87/1/1
Steel
# RHO_I
7.8E-6 0
# E Nu IFlag VP coeff_c exp_p
210 0.3 0 1 4.15401 3.57
# a1 a2 a3 a4 I_fit
1.0 1.0 1.0 1.0 0
# a5 a6 a7 a8
1.0 1.0 1.0 1.0
# Chard
0
# exp_a ALPHA NEXP Fcut Fsmooth NRATE
2 0 0 0 1 1
# Blank
# func_id YSCALE strain rate
4 1.5 1
/FUNCT/4
Steel
# X Y
0 0.3
0.007 0.5
0.05 0.7
0.1 0.75
0.3 0.9
1 1.2
#ENDDATA
/END
`
Пример 2 (с вводом экспериментальных данных I_fit = 1)
`
#RADIOSS STARTER
/UNIT/1
unit for mat g mm ms
/MAT/LAW87/1/1
Aluminum
# RHO_I
2.7E-3 0
# E Nu IFlag VP coeff_c exp_p
70000 0.3 1 0 0 0
# sig00 sig45 sig90 sigb I_fit
133.179899 133.102756 132.330693 162.330301 1
# r00 r45 r90 rb
0.703242569 0.486264221 0.865336191 0.546807587
# Chard
0
# exp_a ALPHA NEXP Fcut Fsmooth
8 0.55 0.21 0 1
# ASwift Eps0 Qvoce Beta KO
415. 0.00220 174.7 11.19 132.4
#ENDDATA
/END
`
Пример 3 (с использованием модели текучести Hansel (Iflag = 2) и модели кинематического упрочнения (Chard = 1))
`
#RADIOSS STARTER
/UNIT/1
unit for mat kg mm ms
/MAT/BARLAT2000/2/1
Steel
# RHO_I
7.800E-6 0
# E Nu IFlag VP c P
210 0.3 2 0 0 0
# a1 a2 a3 a4 I_fit
0.4865 1.3783 0.7536 1.0246 0
# a5 a6 a7 a8
1.0363 0.9036 1.2321 1.4858
# Chard
1
# exp_a
8
# AM BM CM DM PM
0.578 0.185 -6.78 0.02 7.54
# QM E0MART VM0
1379.0 0.01 0.1690
# AHS BHS MHS NHS EPS0HS
-0.261 9.170 0.118 0.401 0.0988
# HMART K1 K2
0.5490 3.95 -0.00681
# TEMP0 TREF CP ETA
300. 293. 460. 0.1
# CRC1 CRA1 CRC2 CRA2
80 0.052 0 0.
# CRC3 CRA3 CRC4 CRA4
0 0.0 0 0.
#ENDDATA
/END
`
Пример 4 (с 3 направлением ортотропного напряжения текучести (Iflag = 3))
`
#RADIOSS STARTER
/UNIT/1
unit for mat Mg mm s
/MAT/LAW87/1
Steel example
# RHO_I
7.85E-9
# E Nu IFlag VP c P
210000 .3 3 1 0 0
# a1 a2 a3 a4 IFIT
0.4865 1.3783 0.7536 1.0246 0
# a5 a6 a7 a8
1.0363 0.9036 1.2321 1.4858
# Chard Ikin
0.5 2
# exp_a F_cut F_smooth
6.5 10000 1
# TAB_ID0 FSCALE0 EPSD0
456 1 1.5
# TAB_ID45 FSCALE45 EPSD45
4 2.0
# TAB_ID90 FSCALE90 EPSD90
6 1
/TABLE/1/456
2 dimensions for strain rate dependency
#DIMENSION
2
# FCT_ID Y
4 1.0 1
4 100.0 2.5
/FUNCT/4
1 dimension function 0 deg
# X Y
0 306
0.001 415
0.002 445
0.005 489
0.01 530
0.02 592
0.05 687
0.1 759
0.15 805
0.2 840
0.3 900
0.5 1000
/FUNCT/5
1 dimension function 45 deg
# X Y
0 260
0.001 265
0.002 270
0.005 280
0.01 297
0.02 322
0.05 370
0.1 422
0.15 457
0.2 485
0.3 528
0.5 528
/FUNCT/6
1 dimension function 90 deg
# X Y
0 270
0.001 312
0.002 318.375
0.005 337.5
0.01 368.625
0.02 423.75
0.05 500
0.1 540
0.15 550
0.2 560
0.3 565
0.5 570
#ENDDATA
/END
`
```
Комментарии
Функция текучести выражена как:
`
f = σ_eq/σY
`
Где: - σ — тензор напряжений Коши - σY — напряжение текучести - σ_eq — эквивалентное напряжение Barlat 2000, вычисляемое следующим образом:
Формула:
`
σ_eq = 1/√2 (Φ'(X') + Φ''(X'')) ^ 1/a
`
Где: - Φ’ и Φ’’ — потенциальные значения тензоров X’ и X’’, которые являются линейными преобразованиями отклоняющегося напряжения.
Iflag = 0: Вкладка текучести против эволюции пластической деформации. σY = f(εp)
Возможно добавить зависимость от скорости деформации.
Iflag = 1: Аналитическая формулировка Swift-Voce. Модель выражена как:
`
σy = α_sv(A(εp + ε_0)^n + 1 - α_sv)(K_0 + Q(1 - exp(-Bεp)))
`
Где: - εp — эквивалентная пластическая деформация.
Iflag = 2: Рассматривается модель упрочнения Hansel. Модель описывается различными математическими выражениями, учитывающими температуру и эволюцию мартенсита.
Iflag = 3: Рассматривается 3-направленная ортотропная табулированная формулировка напряжения текучести.
Если Chard > 0 и Ikin = 1, используется кинематическая модель упрочнения Chaboche Rousselier. Обратное напряжение вычисляется следующим образом:
`
β = ∑ Ciβi
Δβi = Chard · Ai/Ci Δεp - Ciβi Δεp
`
Примечание: Где активировано кинематическое упрочнение, функция текучести становится:
`
f = σ' = -β = -σYMixed
`